24 research outputs found

    Trees with Given Stability Number and Minimum Number of Stable Sets

    Full text link
    We study the structure of trees minimizing their number of stable sets for given order nn and stability number α\alpha. Our main result is that the edges of a non-trivial extremal tree can be partitioned into n−αn-\alpha stars, each of size ⌈n−1n−α⌉\lceil \frac{n-1}{n-\alpha} \rceil or ⌊n−1n−α⌋\lfloor \frac{n-1}{n-\alpha}\rfloor, so that every vertex is included in at most two distinct stars, and the centers of these stars form a stable set of the tree.Comment: v2: Referees' comments incorporate

    Linear inequalities among graph invariants: Using GraPHedron to uncover optimal relationships

    Get PDF
    Optimality of a linear inequality in finitely many graph invariants is defined through a geometric approach. For a fixed number of graph vertices, consider all the tuples of values taken by the invariants on a selected class of graphs. Then form the polytope which is the convex hull of all these tuples. By definition, the optimal linear inequalities correspond to the facets of this polytope. They are finite in number, are logically independent, and generate precisely all the linear inequalities valid on the class of graphs. The computer system GraPHedron, developed by some of the authors, is able to produce experimental data about such inequalities for a "small" number of vertices. It greatly helps in conjecturing optimal linear inequalities, which are then hopefully proved for any number of vertices. Two examples are investigated here for the class of connected graphs. First, all the optimal linear inequalities for the stability number and the number of edges are obtained. To this aim, a problem of Ore (1962) related to the Turán Theorem (1941) is solved. Second, several optimal inequalities are established for three invariants: the maximum degree, the irregularity, and the diameter. © 2008 Wiley Periodicals, Inc
    corecore